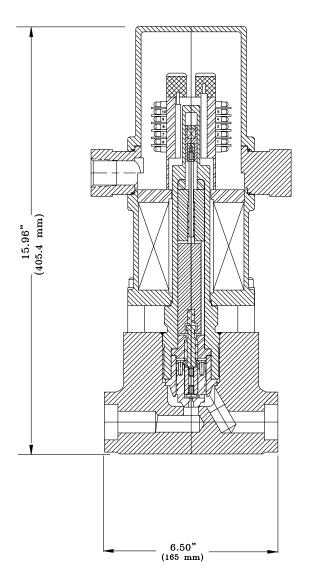

2-Way Direct Lift Pilot Assist Fail Open, Fail Closed

DESCRIPTION


The V526P is specifically designed for liquid or gas applications in the nuclear energy industry. Utilizing Valcor's "Through The Wall" magnetic principle of operation eliminates the potential for external leakage. The V526P uses a piloted poppet to assist the opening of the main poppet, enabling higher operating pressures and flows with minimal power consumption. Isolation standoffs prevent excessive heat transfer from the process media to the solenoid operator. The internal parts are contoured to retard buildup of contamination and sludge. Its compact, lightweight design provides excellent resistance to seismic vibration and shock. A completely enclosed and encapsulated coil insures continuous operation during a LOCA event.

APPLICATION

Applications include feed water control systems, dump lines, make-up water, miscellaneous process systems, monitoring/sampling and head venting systems, and it is often used to pilot larger process control valves.

FEATURES

- High cycle life over 100,000 operations in most applications
- Resistant to contamination and sludge buildup
- Available in Fail Safe Closed, Fail Safe Open, or Fail in Last Position configuration
- Stellite or elastomer seat available
- Optional position indication switches for remote status indication
- Easy maintenance without disturbing the pressure boundary seals
- 2-Piece NEMA 4 stainless steel coil housing
- Stress and seismic analysis available
- Valve Ratings: ANSI class 150 to 2500
- Qualified life: up to 60 years + LOCA

Typical Dimensions of a 1" Valve (with Position Switches)

Custom designs are our specialty. Contact us today to see how we can help on your next project.

Valcor Engineering Corporation 2 Lawrence Road | Springfield, NJ 07081 (973) 467-8400 | nuclear@valcor.com www.valcor.com

V526P

2-Way Direct Lift Pilot Assist Fail Open, Fail Closed

Specifications

Valve	ASME B&PV, Section III Class 1, 2, & 3, B16.34, B31.1/3
Solenoid Operator	Class H materials or better. 120, 220, 240, 380 VAC or 24, 48, 125, 250 VDC.
Solenoid Housing	Totally enclosed. Meets minimum of NEMA 4 or better. Qualified to IEEE 323, 344, 382.
Line Connection	Standard: socket weld. Optional: butt weld, NPT or tube extensions
Body Material	Standard: stainless steel Optional: carbon steel
Qualification	IEEE 323 - 1974, 1983, and later editions IEEE 344 - 1975, 1987, and later editions IEEE 382 - 1980, 1996, and later editions ASME QME-1 - 2007 and later editions
Radiation Resistance	Standard at 2 x 10 ⁻⁸ rads.

			Operating Differential Pressure (ΔP) PSI										
VALVE Type	Max. Fluid Temp.	Cv*	1	2	3	4	5	10	15	30	70	80	
P1AH	650°F	ΔP PSI	1200	700	500	375							
P2BH	650°F		4000	3000	2000	1600	1000						
P2SH	650°F				5000	4500	3750						
РЗВН	650°F							790					
P3SH	650°F							2500					
P4BH	650°F								950	400			
P4SH	650°F								2500	2500			
P5CH	650°F										1250		
P5SH	650°F										2500		
P6CH	650°F											1250	
P6SH	650°F											2500	
	ĭ	1			ĭ	ì							
P2SS	300°F	ΔP PSI			450	400	300						
P3BS	300°F							125					
P3SS	300°F							375					
P4BS	300°F								140	55			
P4SS	300°F								350	265			
P5CS	300°F										185		
P5SS	300°F										350		
P6CS	300°F											185	
P6SS	300°F											350	

^{*}The pressures listed above are typical for each valve type. Actual Cv values may vary depending on individual applications.

Custom designs are our specialty. Contact us today to see how we can help on your next project.